
CrossTalk—September/October 2016 23

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Background: Why Sue Software Companies?
Most commercial software contains serious flaws and defects,

some of which are exploitable as vulnerabilities. This has always
been the case, because it has proven impossible to fully test
software, and while flaws/defects can be substantially reduced
by adopting software assurance processes, [2] software prod-
ucts are never entirely free of flaws, either overlooked during
development or intentionally left uncorrected at time of ship-
ment. Over the last four decades, advances there have been ex-
ponential advances in software technology associated with the
ubiquity of computers (first mainframes, then personal comput-
ers, and now mobile devices) and computer networks, the digital
automation of once-mechanical controls for physical systems
and processes, growing concerns over Information Warfare, the
rise of hacking, malware, and computer crime, the open source
movement, cloud computing, and on the horizon, the Internet of
Things and The Singularity. With each advance, software has in-
creased in size, complexity, ubiquity, exposure, and criticality due
to by now almost complete human dependence on software’s
correct, reliable operation.

Legal Liability for
Bad Software
Abstract. This article focuses on lawsuits as a recourse for purchasers of defective
COTS software — particularly safety-critical COTS software and software-controlled
systems, such as software used in commercial aircraft, motor vehicles, unmanned
aerial vehicles, medical devices, physical security systems, automated teller ma-
chines, commercial robots and industrial control systems, a wide variety of COTS
diagnostic and sensor systems, a nd the whole growing panoply of cyber-physical
devices and systems that collectively comprise the “Internet of Things.” [1]

Table 1. Some noteworthy software disasters [2]

1974 London Ambulance Service
Poorly designed computer-assisted dispatch software delayed
multiple ambulance dispatches, resulting in up to 30 deaths.

1985-87 Therac-25 radiotherapy machine
Concurrent programming errors caused the machine to give patients
massive radiation overdoses; in two cases, these were fatal.

1991 MIM-104 Patriot surface-to-air missile
A software miscalculation error prevented the missile from
intercepting an Iraqi missile on its way to strike a military
compound in Saudi Arabia; 28 American soldiers were killed.

1992 F-22 Raptor flight control system A software error caused the $150,000,000 fighter jet to crash.

1994
Royal Air Force Chinook engine control
system

A software failure was found to be the likely cause of the
helicopter’s crash, which killed 29 people.

1996 European Space Agency (ESA) Ariane 501
A buffer overflow caused a hardware exception, leading to the
rocket’s crash upon launch.

1999
National Space and Aeronatic
Administration (NASA) Mars Polar Lander

The software’s misinterpretation of sensor data led to the craft’s
crash into Mars’s surface.

2003
General Electric power grid monitoring
system

A race condition in the system’s software left a local power outage
undetected, which escalated into a 48-hour blackout that extended
across eight U.S. states and a Canadian province.

2005 ESA CryoSat-1 rocket propulsion unit
The absence of a critical software command led to the satellite’s
crash upon launch.

2009
Toyota (multiple models) electronic throttle
control systems

Software errors caused multiple incidents of sudden acceleration,
resulting in crashes that killed 89 people.

2009 Toyota Prius anti-lock braking system
Software errors led to braking failures, resulting in at least three
crashes and multiple injuries.

But software has fallen short of its ability to meet expectations.
And some of its failures have resulted in catastrophes of a mag-
nitude that for other sectors and industries—from meat packing to
automobiles—have raised outrage so great that the government
was compelled to establish national regulations (and in a few
cases, international) with whole agencies to enforce them. [3]

Inexplicably, despite these costly and fatal software-related
disasters, and despite the recent spate of software malfuction-
and defect-related automobile recalls at Toyota, Jeep-Chrysler,
Honda and Volvo, and despite the software-related fraud com-
mitted by Volkswagen, nothing has inspired a general or sus-
tained outcry or driven the government to undertake regulation
of the software industry, as it has when other industries have
been involved in safety or security catastrophes.

Despite decades of improvement of software safety and qual-
ity, most commercial software is still shipped with serious flaws
and defects, some of which are exploitable as vulnerabilities.
This has, in fact, been going on so long, it has simply become
expected and accepted by most software customers. This is in
large part because the software industry continues to auda-
ciously insist that errors, defects and vulnerabilities in software
are not only unavoidable, but represent a perfectly acceptable
standard for software. [3] Moreover, they argue that the alterna-
tive of adhering to strict software assurance standards would
not only be so costly as to make them uncompetitive and drive
them out of business (or at least reduce their profit margins), it
would severely inhibit innovation and delay the release of new
features, which would harm the consumer. Apparently, it is with
the consumer’s best interests in mind that the software industry
persists in producing poor quality, vulnerable products.

The truism that it is impossible to test software fully is widely
accepted. This has been interpreted by many in the industry
as free licence to adopt ultra-rapid agile methods and DevOps
practices that enable developers to produce new software
releases at an amazing rate but allow little time to fix cod-
ing errors or patch critical vulnerabilities that are found during
testing and allow even less time to rethink designs that contain
larger defects or requirements that are deficient. [4] Issues that
cannot be mitigated by simple bug fixes, and which can only be
discovered through thorough reviews and testing — or revealed
when the software fails or is successfully hacked after deploy-
ment — are unlikely to ever be addressed. [5]

These problems have been reduced somewhat in larger soft-
ware firms, such as Microsoft [6], that have the budgets to im-
plement software assurance programs that help their developers
reduce the overall number of flaws, vulnerabilities and even
design defects in their software. But most software vendors
— despite the publication of numerous “quality” and “secure”
software methodologies over the past two decades — still do
little to improve the quality or security of their processes. As a
result, they ship products that contain easily avoidable flaws that
their developers actually discovered during testing but chose not
to correct because doing so would have delayed the release by
a few days or weeks. (Even Microsoft, under pressure to adopt
rapid agile development practices, has reduced the robustness
of their security development lifecycle for products they develop
under their agile regime.) The almost universal philosophy in the
commercial software industry is “ship now, patch later.”

Karen Mercedes Goertzel

24 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Outside of specialist firms that focus on developing real-time
embedded software for safety-critical or cryptographic systems,
the software industry has never shown interest in self-regulation
and has loudly resisted external regulation of its products’ qual-
ity, safety or security. Governments have also been unwilling
to regulate the software industry out of fear of stifling industry
innovation and the significant economic growth the industry
brings in countries where it is active. Even the European Com-
mission, which is far more active in regulating standards for
European Union industries than most other government bodies,
has been reluctant to regulate the European software industry.

In the absence of regulation, any customer who falls victim to
the catastrophic results of software faults and failures has only
one recourse: the courts.

Software and the Courts
The ambiguities surrounding software liability have been

widely discussed in academic law literature (see Bibliography).
These questions include whether software is a good or a service
under the law, how to deal with a product as intangible and
highly technical as software, and how binding End User License
Agreements (EULAs) are under contract law, particularly in
cases alleging gross negligence by the vendor or significant
injury to the customer. [8]

The laws governing tort lawsuits have not yet been adapted to
a world in which software is so universally present and prevalent.
The literature on software liability (as typified by the footnotes
throughout this article) reveals that the majority of software li-
ability legal precedents were set in the 1980s. Little has changed
since then in how contract and tort liability law are interpreted
in reference to software. Lawyers who litigate such suits in the
2010s must spend a great deal of time and intellectual energy
interpreting laws designed to govern commerce in physical prod-
ucts or professional services such as health care or architecture
to figure out whether and how they apply to software.

Suing for Breach of Warranty Under Contract Law
In many cases, recovery of damages resulting from software

failures have relied on contract law, tort law or both. When soft-
ware defects result in only economic losses (with a few extreme
exceptions discussed in the section below on economic loss and
tort liability), plaintiffs seeking restitution rely on the contract
theory of “breach of warranty.” Such suits are possible when
software vendors include in their licence agreements express
warranties about their product’s performance, functional capa-
bilities or attributes such as security and quality, or when warran-
ties are implied by legal requirements imposed on all products,

such as merchantability and fitness for a particular purpose. A
software defect often represents a deviation from the software’s
express or implied warranties.

To successfully sue under breach of warranty, a plaintiff must
satisfy the requirements of privity, which means the software
contract (license) must have been made directly between the
buyer and the software vendor. Privity does not exist for soft-
ware that is licensed to a reseller, other equipment manufacturer
(OEM) or integrator, then resold to an end user. [9]

In addition to needing privity, an admissible breach of warranty
suit must have a software licence that:

1. Includes express warranties about the product or its per-
formance, or includes implied warranties.

2. Excludes enforceable limitation of liability clauses that pre-
clude the purchaser from recovering more than the original
purchase price of the software licence.

Despite a growing body of breach of warranty case law for
software products, it remains unclear whether the Uniform
Commercial Code (UCC) — which defines the widely accepted
interpretation of civil contract law in the USA — even applies to
software licenses because they do not transfer ownership of the
actual software product from vendor to purchaser, but only trans-
fer the right to use the vendor-owned product. If this is the case,
software contracts are not product sales contracts but contracts
for a service. In this case, it is a loan service (loan of use of the
software). By extension, the software is not a product but a part
of service delivery. This distinction between good and service is
pertinent to determining not only how breach of warranty liability
can be applied under contract theory, but also whether the theory
of strict products liability can be applied to software as a product.

COTS software and software embedded in COTS products are
frequently accepted as goods because they are mass-produced
and transferred to unknown buyers who must rely upon the
representations of the software vendor — two key prerequisites
of being considered a product under the UCC. It doesn’t mat-
ter whether the software is “bundled” with services such as the
vendor’s standard technical support package or user training; the
software itself remains a product. By contrast, when software is
developed under contract for a specific customer(s), or bundled
into a much larger set of third-party services like system integra-
tion services, the ability to label the delivered software as a good
or product rather than a service is cast into doubt.

Civil Liability for Fraud
It may be possible to sue a software vendor for fraud if the

plaintiff can prove that he or she accepted the defective soft-
ware product only as a result of the vendor’s willful misrepre-
sentation of that product’s performance. Courts have favourably
ruled against software vendors for fraudulent misrepresentation
when those vendors have misrepresented facts that are known
exclusively to the vendor, such as undisclosed vulnerabilities,
defects, malicious logic or failure to test the software. [10]

Tort Products Liability
Because warranty law limits damages to recovery of

product cost, plaintiffs often turn to tort theories of product

Table 2. A few definitions [7]

Liability
The state of being bound or obliged in law or justice to do, pay, or make good
something; legal responsibility;

Privity The existence of a direct relationship between the parties of a contract;

Theory
(as in Theory of Case) Facts upon which a lawsuit will be founded, and which form
the basis of a right to sue;

Tort A legal injury or wrong committed upon a person or property independent of contract.

CrossTalk—September/October 2016 25

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

liability because contractual limitations do not normally apply
to them and they have no requirements for privity or foresee-
ability. Tort liability arises when:

1. A defect in a product results in a failure of that product
to operate safely as reasonably expected. For software, it
doesn’t matter whether the failure was accidental or caused
by a Denial of Service attack exploiting the defect; and

2. Personal injury, death or property damage results.
According to the American Law Institute’s Restatement

(Third) of Intentional Torts: Products Liability, “A product
is defective in design when the foreseeable risks of harm
posed by the product could have been reduced or avoided
by the adoption of a reasonable alternative design ... and the
omission of the alternative design renders the product not
reasonably safe.” [11] Three tort theories of product liability
are potentially applicable to COTS software: negligence,
malpractice and strict products liability.

Under all three tort theories, the plaintiff can recover dam-
ages associated with the following:

—loss of valuable data. Data can be valuable due to security clas-
sification or regulated privacy;

—destruction of raw materials;
—destruction or loss of property other than the product itself.
Under a strictly limited set of extreme conditions, plaintiffs may

also recover damages due to destruction of the product itself.
Another area of tort liability, intentional liability, is almost exclu-

sively limited to acts of battery (as in “assault and battery”). However,
some have questioned whether intentional liability might be appli-
cable in cases when a product contains a defect, backdoor or mali-
cious logic introduced through malicious developer or supply chain
sabotage. Stay tuned for the first lawsuit to explore this possibility.

Tort Theory of Negligence
General tort theories of negligence apply to developers,

integrators, testers, maintainers, technical support person-
nel, trainers and anyone else that is under contract to deliver
the services of manufacturing, maintaining or supporting the
software product or another service in which delivery of the
software product plays a part. Tort negligence permits permit
recovery if a software defect can be proven to result from the
service provider’s failure to apply due care when designing or
implementing (“manufacturing”) the software.

Under negligence, the service provider cannot be held
responsible for every software product or service defect that
causes loss to the customer or a third party; responsibility is
limited to only harmful defects that could have been detected
and corrected through “reasonable” software practices.

A buyer of COTS software products or software-controlled
devices or systems will find it very difficult to prove vendor negli-
gence because the buyer lacks visibility into the “black box” soft-
ware and its development process. The complex and mysterious
nature of software, which is not well understood by anyone but
its developers, forces buyers to trust the vendors’ representation
of that software. As a result, anyone suing for negligence must
be prepared to incur significant expenses associated with hiring
technology-savvy lawyers, researchers and expert witnesses. [12]

Tort Theory of Malpractice
Tort theories of malpractice are a more rigorous, specialized form
of tort negligence. They apply only to defendants in recognized,
licensed professions, such as medicine, architecture and engi-
neering. To sue under the tort theory of malpractice, the plaintiff
must prove that the software’s developer belongs to a recognized
(ideally government-licensed) profession like software engineer-
ing and has failed to comply with the standards of that profession
while engineering the defective software product.

A recognized system of professional licensure for software
engineers has not yet been established nationwide, despite lim-
ited attempts at software engineering professionalization. For this
reason, establishing tort liability of a software contractor — or a
COTS software vendor — under tort theory of malpractice remains
impractical. To date, no successful software malpractice suit has
been undertaken in the U.S., though a few jurisdictions may have
paved the way for successful litigation of computer malpractice
claims. At least one court, the U.S. Court of Appeals for the 8th
Circuit, agreed to hear an explicit computer malpractice case,
Diversified Graphics, Ltd. v. Groves, 868 F.2d 293, in 1989. [13]
By contrast, in Columbus McKinnon Corp. v. China Semiconductor
Co., Ltd., 867 F. Supp. 1173, 1182-83 (1994), the Western Dis-
trict Court of New York refused to recognize software program-
mers as professionals and rejected the malpractice suit. [14]

The ability to sue software engineers for malpractice is
one of several arguments put forth in favor of establishing a
broadly recognized professional licensing scheme for software
engineers, and such licenses are already being issued in some
U.S. states and Canadian provinces [15]. Moreover, a grow-
ing number of independent software developers and software
engineering firms now invest in software malpractice insurance
in anticipation of an increase in liability and malpractice lawsuits
and the eventual professionalization of software engineering.
This is particularly common among those who serve industries in
which the profession of engineering is well understood, such as
the industries that produce avionic and space systems, medical
devices or industrial control systems for nuclear plants. [16]

Tort Theory of Strict Products Liability
In most states, recovery is possible under strict liability tort

theories regardless of any proven responsibility on the vendor’s
part. Neither negligence nor malpractice needs to be proven;
strict liability can apply even if the vendor exercised reasonable
care to avoid a defect and followed professional conduct stan-
dards. Proof that the defect was present and caused the plaintiff
injury or property damage or loss is the only consideration.

Strict products liability for software is based on several premises:
1. The software is defective.
2. The software is a product, not a service. This tends to

limit strict liability claims to COTS software and software
embedded in COTS products.

3. The plaintiff used the software in the intended manner
and did not introduce the defect through that usage. If the
product requires user modification to operate, the vendor
cannot be held liable for any injuries arising from defects
introduced by the user’s modifications.

26 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

According to Restatement (Third) of Torts, for a product to be
subject to strict liability, it must be unreasonably dangerous to the
ultimate consumer. Defects (including flaws/errors) in software
and software-controlled products may be deemed unreasonably
dangerous when:

1.	 They were present in the sofware code at time of product sale.
2.	 The design is defective, so that while it performs exactly

as specified, the software is essentially designed.
3.	 The customer was not adequately warned by the vendor of

the presence of known hazards, or of the limitations and
parameters under which the software must operate.

4.	 The software was defectively designed, which means
that while it performs exactly as the vendor intended, the
intended performance is not reasonably safe.

The Third Restatement also suggests that if a manufac-
turer’s knowledge of expected harms from defects can be
proven, this will help support a claim of strict liability: “Be-
cause manufacturers invest in quality control at consciously
chosen levels, their knowledge that a predictable number of
flawed products will enter the marketplace entails an element
of deliberation about the amount of injury that will result from
their activity.” [17] In other words, the sheer fact that manu-
facturers have quality control processes are admissions that
they know their raw products are highly likely to be defective,
and thus require careful scrutiny and correction before being
released to the public.

Most courts accept that tort liability generally does not permit
recovery of damages arising from the loss or destruction of the
defective product itself. However, an exception can be made when
defective software within a larger product is unreasonably danger-
ous and leads to the failure of the product, resulting in a calamitous
event. This interpretation allows for recovery of product-destruction-
related costs in most of the incidents in Table 1.

In such cases, the plaintiff doesn’t need to prove that the
defect and the associated product loss were clearly foresee-
able due to the inherent nature of the product and its func-
tion, though one could clearly predict that defective flight
control software could cause an airplane to crash or that failed
controller software in an autonomous automobile could cause
the vehicle to crash. In any case, such property losses would
be recoverable under strict liability together with the personal
injury damages recoverable under indisputable strict tort li-
ability and the damage or destruction of whatever the airplane
or automobile crashed into. [18]

Because strict liability and other tort lawsuits against software
vendors are so expensive for plaintiffs to pursue, they have only
proven practical when a class action lawsuit can be initiated.

The Federal Trade Commission as
Watchdog and Plaintiff

The Federal Trade Commission (FTC) has expanded its
purview from suing high technology companies for unfair
competition to suing for unfair or deceptive trade practices
such as “software misrepresentation.” Most FTC cases are
settled out of court with results that are binding on the
defendant. In February 2013, the FTC settled one of the

first liability suits involving inadequate software security
against HTC America, Inc., manufacturer of Android-based
smartphones. The FTC’s complaint alleged “HTC’s failure to
employ reasonable security in the customization of its mobile
devices,” and stated that “had HTC implemented an adequate
security program, it likely would have prevented, or at least
timely resolved, many of the serious security vulnerabilities
it introduced through the process of customizing its mobile
devices.” The FTC found that HTC had failed to follow com-
monly accepted secure programming practices and Android’s
documented secure customization practices, and that HTC
also failed to adequately test the security of their products,
to remove debug code before shipping, and to establish a
vulnerability reporting mechanism.

In the settlement, HTC agreed to a number of remediation
measures specified by FTC, including the establishment of a
full-scale software security assurance program that would be
independently validated every two years. At the time, the HTC
case was heralded by many IT lawyers as one of the “most
significant decisions in cybersecurity law.” [19] In February
2016, the FTC reached a similar settlement with almost iden-
tical terms with router manufacturer ASUSTeK Computer, Inc.,
arising from multiple ASUS customer complaints to the FTC
about vulnerabilities in ASUS’ AiCloud and AiDisk software
and firmware. As with HTC, the FTC confronted ASUS for
systemic deficiencies in its software development and system
engineering processes. With these two settlements, the FTC
has shown not only its willingness but also its competence
in confronting and altering the bad practices of producers of
vulnerable software.

Whither Regulation?
In the U.S., there has been a long-running debate about

whether the government should take a more active regulatory
role to require vendors to produce secure computer software.
One of their biggest concerns is that regulating the software
industry could stifle innovation or drive software companies
to other countries with less restrictive laws, as has happened
in other U.S. industries. Based on historical precedent, there
is also a case to be made that, absent strict regulation of
commerce, exemplary punitive damage awards by courts and
the fear of lawsuits they engender serve the same purpose
as government regulation— they deter manufacturer miscon-
duct and incentivize quality improvements. [20]

Proponents of regulation argue that continued reliance
on the civil courts to improve the behaviors and products of
the software industry unfairly favors the industry over injured
consumers and is therefore unjust. Clearly agreeing with this
sentiment, in 2009, the European Commission designated
consumer protection for software buyers as a priority area for
possible EU legislative action. [21]

In the current corporations-write-the-laws climate that exists
in the U.S. (and, to a lesser extent, the U.K.), it is common to cyni-
cally assume that any regulations that did make it into law would
be more likely to protect the software industry than the consumer
— the exact opposite result proponents of regulation are seeking.

CrossTalk—September/October 2016 27

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

REFERENCES
1.	 This article does not discuss issues of intellectual property law with regards to software, nor

does it explore the tantalizing question of criminal liability when a software-controlled autono-
mous machine such as a self-driving automobile or a robot/embodied artificial intelligence
operates in a way that breaks the law. See Miller, C. C., (2014, May 13). When Driverless Cars
Break the Law. The New York Times. Retrieved from http://www.nytimes.com/2014/05/14/
upshot/when-driverless-cars-break-the-law.html See also: Paul, (2013, October 11). When
Autonomous Vehicles Crash, Is the Software Liable? The Security Ledger. Retrieved from http://
securityledger.com/2013/10/when-autonomous-vehicles-crash-is-the-software-liable/

2.	 List of Software Bugs. Wikipedia.org, Retrieved from http://en.wikipedia.org/wiki/
List_of_software_bugs; London Ambulance Service. Wikipedia.org. Retrieved from
http://en.wikipedia.org/wiki/London_Ambulance_Service#Computerisation

3.	 In his testimony to the House of Lords in 2006, Microsoft’s Jerry Fishenden stated that
the company was “making our platform as secure as we possibly can within the complex
nature of software” [italics added]. See: House of Lords (U.K.) Science and Technology
Committee. (2007, July 24). 5th Report of Session 2006–07, Personal Internet Security,
Volume I: Report, Chapter 4: “Appliances and applications.” HL Paper 165–I. Retrieved
from http://www.publications.parliament.uk/pa/ld200607/ldselect/ldsctech/165/165i.pdf

4.	 For examples, see: U.S. Department of Agriculture Food Safety and Inspection Service,
“FSIS History” Retrieved from http://www.fsis.usda.gov/wps/portal/informational/
aboutfsis/history; (2011, March 25). After the Triangle Fire: State and National Workplace
Safety Reforms. [Blog post]. Political Correction blog. Retrieved from http://politicalcor-
rection.org/factcheck/201103250003; Constitutional Rights Foundation. (Fall 2008).
Upton Sinclair’s The Jungle: Muckraking the Meat-Packing Industry. . Bill of Rights in
Action, Vol. 24 (No. 1). Retrieved from http://www.crf-usa.org/bill-of-rights-in-action/
bria-24-1-b-upton-sinclairs-the-jungle-muckraking-the-meat-packing-industry.html; U.S.
Coast Guard. International Ice Patrol. Retrieved from http://www.uscg.mil/history/articles/
iip_history.asp; The British Dams Society. About Dams—Safety: The Dolgarrog Disaster,
1925. Retrieved from http://britishdams.org/about_dams/safety.htm; Jensen, C. (2015,
November 26). 50 Years Ago, ‘Unsafe at Any Speed’ Shook the Auto World. The New York
Times. Retrieved from http://www.nytimes.com/2015/11/27/automobiles/50-years-ago-
unsafe-at-any-speed-shook-the-auto-world.html;Piper Alpha. Wikipedia.org. Retrieved
from http://en.wikipedia.org/wiki/Piper_Alpha

5.	 With the adoption of agile development processes, software firms have come to rely
increasingly on public beta and even alpha testing of their products. The jury is out,
however, on whether crowdsourcing of testing has been spurred by a desire to improve
the quality of software or merely to shift the vendor’s cost of testing to the consumer.

6.	 Lohr, S. (2003, October 6). Product liability lawsuits are new threat to Microsoft. The New
York Times. Retrieved from http://www.nytimes.com/2003/10/06/business/product-
liability-lawsuits-are-new-threat-to-microsoft.html

7.		 Adapted from Black’s Law Dictionary Free Online Legal Dictionary, 2nd Edition. Retrieved
from http://thelawdictionary.org

8.	 The last of these questions has been clearly addressed in Kingsway Hall Hotel Ltd.
v. Red Sky IT (Hounslow) Ltd. (2010). The Court ruled that Red Sky IT, a software
vendor, could be held liable for damages beyond the value of the software it sold. This
overturned contract law precedent, which had previously limited such damages to the
purchase price of the software, The ruling also held that the exculpatory terms of Red
Sky’s software license agreement were unreasonable, and thus invalid. See: England
and Wales High Court (Technology and Construction Court) Decisions, Neutral Citation
Number: [2010] EWHC 965 (TCC), Case No: HT-08-111. Retrieved from http://www.
bailii.org/ew/cases/EWHC/TCC/2010/965.html. Note that EULAs are no longer fully
binding in Australia, either thanks to a 2011 revision of Australian Consumer Law that
eliminated the right of developers and importers of business software to limit their own
liability for consequential loss arising from faults in their software. See: Westmoreland,
R. (2011, November 8). Unlimited Liability for Software Companies. HWL Ebsworth
blog. Retrieved from http://www.hwlebsworth.com.au/latest-news-a-publications/
publications/intellectual-property-and-trade-marks/item/275-unlimited-liability-for-
software-companies.html. For French law, see: Rambaud, S. (2004, June 7). French

Supreme Court strikes out limitation of liability provision from an IT contract where the
software publisher has breached a material obligation. Bird & Bird blog. Retrieved from
http://www.twobirds.com/en/news/articles/2007/frenchsupremecourt-strikes-out-
limitation-liability-provision

9.	 Increasingly, when no privity of contract exists between the plaintiff and defendant, and the
plaintiff was financially injured through use of defective software licensed through a third
party, courts are allowing tort actions for economic loss. Otherwise, tort actions exclude
economic loss except in the extreme conditions described later in this article. See Abdullah,
F., Jusoff, K., Mohamed, H., & Setia, R. (2009, November). Strict versus Negligence Software
Product Liability. Computer and Information Science, Vol. 2 (No. 4). Retrieved from http://
pdfs.semanticscholar.org/502a/604e4ff0e3b3028ff1ee9d82f63235055134.pdf

10.	Kaner, C. (1997). Software Liability. Self-published whitepaper. Retrieved from http://
kaner.com/pdfs/theories.pdf

11.	 Simons, K. W. (2006). A Restatement (Third) of Intentional Torts? Arizona Law Review,
Vol. 48. Retrieved from http://www.bu.edu/lawlibrary/facultypublications/PDFs/Simons/
RestatementThird.pdf. Restatement (Third) of Torts: Products Liability (1998) is one of a
series of tort law-clarifying restatements published by the American Law Institute, a group
of America’s leading legal scholars. The U.S. legal profession considers the Restatements
authoritative in their interpretations of tort theories, including strict product liability.
The Restatement scholars’ omission of the reasonable expectations of consumers as an
independent governing standard, or test, for whether a product is defective is significant;
this “consumer expectations test,” which was present in the Second Restatement, was
missing from the more recent Third Restatement.

12.	By contrast, customers who contract service providers to develop custom software —
either from scratch, or through significant modification of existing software — are much
closer to, and have more visibility into, the software and the processes used to produce
it. For this and other reasons, strict products liability rarely applies to custom-developed
software. Tort negligence and, in some cases, tort malpractice may potentially apply,
however. See McCullagh, D. (2003, August 26). A Legal Fix for Software Flaws. CNET
News.com. Retrieved from http://news.com.com/2100-1002_3-5067873.html

13.	Buchanan, I. & Rooney. (2001, June 1). PC, Computer Malpractice Actions: Are They the
Wave of the Future?. Retrieved from http://www.bipc.com/Computer-Malpractice-Actions-
Are-They-the-Wave-of-the-Future-06-01-2001/; Kaner, C. (1996). Computer Malpractice.
Software QA Quarterly, Vol. 3 No. 4. Retrieved from http://kaner.com/pdfs/Malprac.pdf

14.	Kornecki, & Cunningham, (2003). Software Safety—Ethics, Professionalism, and Legal Issues.
Proceedings of the 21st International System Safety Conference. Retrieved from http://pages.
erau.edu/~kornecka/papers/21SSC_ethics.pdf; Also Op. cit. Buchanan, Ingersoll & Rooney.

15.	Kowalenko, K. (2012, February 3). Licensing Software Engineers Is in the Works. The
Institute. Retrieved from http://theinstitute.ieee.org/career-and-education/career-
guidance/licensing-software-engineers-is-in-the-works. Also, Peters, D. K. (2009, October
30). Licensure for Software Engineers. Class notes for Engineering 7893: Software
Engineering (Memorial University of Newfoundland). Retrieved from http://www.engr.
mun.ca/~dpeters/7893/Notes/presentations/SElicensing.pptx

16.	O’Brien, H. M. (2015, February 2). The Internet of Things: The Inevitable Collision with
Product Liability. Product Liability Advocate. Retrieved from http://www.productliabilityad-
vocate.com/2015/02/the-internet-of-things-the-inevitable-collision-with-product-liability/

17.	 Op. cit. Simons.
18.	Brenneman, S. R. (1986). Computer Malfunctions—What Damages May Be Recovered in a Tort

Product Liability Action. Santa Clara High Technology Law Journal, Vol. 2 Issue 2. Retrieved from
http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1025&context=chtlj

19.	Rubens J. T. & Morse, E. A. (2013, November). Survey of the Law of Cyberspace: Introduc-
tion. The Business Lawyer, Vol. 69. Retrieved from http://apps.americanbar.org/dch/thedl.
cfm?filename=/CL320000/sitesofinterest_files/Cyberspace_Law_Survey_2012.pdf

20.	Vandall, F. J. (1981). Undermining Torts’ Policies: Products Liability Legislation. The
American University Law Review, Vol. 30. Retrieved from https://www.wcl.american.edu/
journal/lawrev/30/vandall.pdf

21.	Op. cit. Simons.

http://www.nytimes.com/2014/05/14/upshot/when-driverless-cars-break-the-law.html
http://securityledger.com/2013/10/when-autonomous-vehicles-crash-is-the-software-liable/
http://securityledger.com/2013/10/when-autonomous-vehicles-crash-is-the-software-liable/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/London_Ambulance_Service#Computerisation
http://www.publications.parliament.uk/pa/ld200607/ldselect/ldsctech/165/165i.pdf
http://www.fsis.usda.gov/wps/portal/informational/aboutfsis/history
http://politicalcor-rection.org/factcheck/201103250003
http://politicalcor-rection.org/factcheck/201103250003
http://politicalcor-rection.org/factcheck/201103250003
http://www.crf-usa.org/bill-of-rights-in-action/bria-24-1-b-upton-sinclairs-the-jungle-muckraking-the-meat-packing-industry.html
http://www.uscg.mil/history/articles/iip_history.asp
http://britishdams.org/about_dams/safety.htm
http://www.nytimes.com/2015/11/27/automobiles/50-years-ago-unsafe-at-any-speed-shook-the-auto-world.html
http://www.nytimes.com/2015/11/27/automobiles/50-years-ago-unsafe-at-any-speed-shook-the-auto-world.html
http://www.nytimes.com/2015/11/27/automobiles/50-years-ago-unsafe-at-any-speed-shook-the-auto-world.html
http://en.wikipedia.org/wiki/Piper_Alpha
http://www.nytimes.com/2003/10/06/business/product-liability-lawsuits-are-new-threat-to-microsoft.html
http://www.nytimes.com/2003/10/06/business/product-liability-lawsuits-are-new-threat-to-microsoft.html
http://www.nytimes.com/2003/10/06/business/product-liability-lawsuits-are-new-threat-to-microsoft.html
http://thelawdictionary.org
http://www.bailii.org/ew/cases/EWHC/TCC/2010/965.html
http://www.hwlebsworth.com.au/latest-news-a-publications/publications/intellectual-property-and-trade-marks/item/275-unlimited-liability-for-saftware-companies.html
http://www.twobirds.com/en/news/articles/2007/frenchsupremecourt-strikes-out-limitation-liability-provision
http://www.twobirds.com/en/news/articles/2007/frenchsupremecourt-strikes-out-limitation-liability-provision
http://www.twobirds.com/en/news/articles/2007/frenchsupremecourt-strikes-out-limitation-liability-provision
http://pdfs.semanticscholar.org/502a/604e4ff0e3b3028ff1ee9d82f63235055134.pdf
http://pdfs.semanticscholar.org/502a/604e4ff0e3b3028ff1ee9d82f63235055134.pdf
http://kaner.com/pdfs/theories.pdf
http://kaner.com/pdfs/theories.pdf
http://www.bu.edu/lawlibrary/facultypublications/PDFs/Simons/RestatementThird.pdf
http://news.com.com/2100-1002_3-5067873.html
http://www.bipc.com/Computer-Malpractice-Actions-Are-They-the-Wave-of-the-Future-06-01-2001/
http://www.bipc.com/Computer-Malpractice-Actions-Are-They-the-Wave-of-the-Future-06-01-2001/
http://kaner.com/pdfs/Malprac.pdf
http://pages.erau.edu/~kornecka/papers/21SSC_ethics.pdf
http://theinstitute.ieee.org/career-and-education/career-guidance/licensing-software-engineers-is-in-the-works
http://theinstitute.ieee.org/career-and-education/career-guidance/licensing-software-engineers-is-in-the-works
http://theinstitute.ieee.org/career-and-education/career-guidance/licensing-software-engineers-is-in-the-works
http://www.engr. mun.ca/~dpeters/7893/Notes/presentations/SElicensing.pptx
http://www.productliabilityad-vocate.com/2015/02/the-internet-of-things-the-inevitable-collision-with-product-liability/
http://www.productliabilityad-vocate.com/2015/02/the-internet-of-things-the-inevitable-collision-with-product-liability/
http://www.productliabilityad-vocate.com/2015/02/the-internet-of-things-the-inevitable-collision-with-product-liability/
http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1025&context=chtlj
http://apps.americanbar.org/dch/thedl. cfm?filename=/CL320000/sitesofinterest_files/Cyberspace_Law_Survey_2012.pdf
https://www.wcl.american.edu/journal/lawrev/30/vandall.pdf

28 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Send resumes to:
76SMXG.Tinker.Careers@us.af.mil

US citizenship required

Tinker AFB is only 15 minutes away from
downtown OKC, home of the OKC Thunder,
and a wide array of dining, shopping,
historical, and cultural attractions.

WE ARE HIRING
ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS

As the largest engineering organization on Tinker Air Force Base, the
76th Software Maintenance Group provides software, hardware, and
engineering support solutions on a variety of Air Force platforms and
weapon systems. Join our growing team of engineers and scientists!

BENEFITS INCLUDE:

 Job security

 Potential for career growth

 Paid leave including federal holidays

 Competitive health care plans

 Matching retirement fund (401K)

 Life insurance plans

 Tuition assistance

 Paid time for fitness activities

Oklahoma City SkyDance Bridge, Photo © Will Hider

Please contact the author to request a comprehensive list.
1. Bad Software Website. http://badsoftware.com/?page_id=62.
2. Armour, J. & Humphrey, W. S. (1993, August). Software Product Liability. Technical Report CMU/SEI-93-TR-13

ESC-TR-93-190. http://www.sei.cmu.edu/reports/93tr013.pdf3.
3. Beard, T. R., Ford, G. S., Koutsky, T. M. & Spiwak, L. J. (2010, July 7). Tort Liability for Software Developers: A

Law and Economics Perspective. The Journal of Computer and Information Law, Vol. 27. http://www.phoenix-
center.org/JCILTortLiability.pdf4.

4. Chong, J. Five part series in The New Republic.·—(2013, October 3). Part 1, Bad Code: Should Software Makers Pay?.
http://newrepublic.com/article/114973/bad-code-should-software-makers-pay-part-1·—(2013, October 11). Part 2, Why
Is Our Cybersecurity so Insecure?. http://newrepublic.com/article/115145/us-cybersecurity-why-software-so-insecure·—
(2013, October 22). Part 3, What You Don’t Know About Internet Security Will Definitely Hurt You.. http://newrepublic.
com/article/115281/what-you-dont-know-about-internet-security-will-definitely-hurt-you·—(2013, October 30). Part 4, We
Need Strict Laws if We Want More Secure Software. http://newrepublic.com/article/115402/sad-state-software-liability-
law-bad-code-part-4·—(2013, October 31). Part 5, The Security Burden Shouldn’t Rest Solely on the Software User. http://
newrepublic.com/article/115421/security-burden-shouldnt-rest-solely-software-user5.

5. Råman, J. (2006, May 26). Regulating Software Development. Juris Doctorate Dissertation, University of
Lapland Faculty of Law. http://archive.nyu.edu/handle/2451/149936.

6. Scott, M. D. (2008). Tort Liability for Vendors of Insecure Software: Has the Time Finally Come? Maryland
Law Review, Vol. 67 Issue 2. http://digitalcommons.law.umaryland.edu/mlr/vol67/iss2/5

7. Spruell, J. & Kamal, M. (2002). Defective Software and the Issues of Malpractice, Negligence, Fraud, and
Misrepresetation. Proceedings of the International Association of Computer Investigative Specialists (IACIS)
2002 Conference (Fort Lauderdale, Florida). http://iacis.org/iis/2002/SpruellKamal.pdf8.

8. Turner, C. S. (1999). Software as Product: the Technical Challenges to Social Notions of Responsibility. Ph.D.
Disertation, University of California, Irvine. http://users.csc.calpoly.edu/~csturner/fulltechreport.pdf9.

9. Vihul, L. (2014). The Liability of Software Manufacturers for Defective Products. The Tallinn Papers, Vol. 1
No. 2. http://ccdcoe.org/publications/TP_Vol1No2_Vihul.pdf

ADDITIONAL READING
Karen Mercedes Goertzel is an
internationally recognized cyber security,
information assurance and software
assurance expert with more than years
of experience in research and analysis,
technology strategy, solution specifica-
tion and architecture, process definition
and improvement, policy and guidance
development, and technical commu-
nication. Her areas of subject matter
expertise include system, software, and
hardware assurance; application security
(including security for web, mobile,
Internet of Things, and cloud applica-
tions); information and communications
technology; supply chain risk manage-
ment; insider threat to information
systems; and information protection, as-
sured information sharing, and data loss
prevention. Her passion is research, and
she is the author or co-author of numer-
ous published peer-reviewed articles
and conference papers and of several
book-length research studies.

ABOUT THE AUTHOR

mailto:76SMXG.Tinker.Careers@us.af.mil
http://badsoftware.com/?page_id=62
http://www.sei.cmu.edu/reports/93tr013.pdf3
http://www.phoenix-center.org/JCILTortLiability.pdf4
http://www.phoenix-center.org/JCILTortLiability.pdf4
http://www.phoenix-center.org/JCILTortLiability.pdf4
http://newrepublic.com/article/114973/bad-code-should-software-makers-pay-part-1%C2%B7%E2%80%94
http://newrepublic.com/article/115145/us-cybersecurity-why-software-so-insecure%C2%B7%E2%80%94
http://newrepublic
http://newrepublic.com/article/115402/sad-state-software-liability-law-bad-code-part-4%C2%B7%E2%80%94
http://newrepublic.com/article/115402/sad-state-software-liability-law-bad-code-part-4%C2%B7%E2%80%94
http://newrepublic.com/article/115402/sad-state-software-liability-law-bad-code-part-4%C2%B7%E2%80%94
http://newrepublic.com/article/115421/security-burden-shouldnt-rest-solely-software-user5
http://newrepublic.com/article/115421/security-burden-shouldnt-rest-solely-software-user5
http://archive.nyu.edu/handle/2451/149936
http://digitalcommons.law.umaryland.edu/mlr/vol67/iss2/5
http://iacis.org/iis/2002/SpruellKamal.pdf8
http://users.csc.calpoly.edu/~csturner/fulltechreport.pdf9
http://ccdcoe.org/publications/TP_Vol1No2_Vihul.pdf

