
CrossTalk—January/February 2017 17

SOFTWARE’S GREATEST HITS & MISSES

Introduction
In 2017, software engineering is still based on custom de-

signs and manual coding. That puts software on about the same
level of manufacturing sophistication as firearms in 1784, before
Eli Whitney introduced standard reusable parts and changed
manufacturing forever.

It is obvious that custom designs and manual coding are
intrinsically expensive and error prone, no matter what method-
ologies or programming languages are used.

This short paper attempts to consolidate the known fac-
tors of software engineering circa 2016. The factors are in
alphabetical order. Because of the labor-intensive manual
methods used to build software, many of the laws are related
to problems and software failures.

Some of the laws did not originate in software but are much
older and are derived from physics, chemistry, and other disciplines.

A Retrospective
View of the Laws of
Software Engineering
Capers Jones, VP and CTO, Namcook Analytics LLC
Abstract. Software development is now more than 60 years of age. A number
of interesting laws and observations have been created by software engineering
researchers and by some academics. This short paper summarizes these laws
and makes observations about the data and facts that underlie them. The laws
discussed in this paper are in alphabetical order.
Many of these laws did not originate with software but are taken from phys-
ics and other scientific fields. However, they are included because they seem
relevant to software development.

Bernoulli’s Principle
• Velocity is greatest where density is least.
This is actually a law of fluid dynamics that refers to the flow

of viscous liquids. However, it also applies to traffic patterns and
has been used to optimize traffic flow through tunnels. It seems
to apply to software as well because the work of smaller teams
proceeds faster than the work of larger teams. This tends to add
credence to the Agile concept of small teams.

Boehm’s First Law
• Errors are more frequent during requirements and design
activities and are more expensive the later they are removed.
Requirements and design errors do outnumber code errors.

However, cost per defect stays flat from testing through mainte-
nance. The cost per defect metric penalizes quality and achieves
lowest values for the buggiest software. For zero defect software,
the cost per defect is infinity since testing is still necessary.
Defect removal cost per function point is the best choice for
quality economic analysis. The reason cost per defect seems to
rise is because of fixed costs. If it costs $10,000 to write and run
100 test cases and 50 bugs are fixed for another $10,000, the
cost per defect is $200. If it costs $10,000 to write and run 100
test cases and only 1 bug is fixed for another $200, the cost per
defect is $10,200. Writing and running test cases are fixed costs.

Boehm’s Second Law
• Prototyping significantly reduces requirements and design
errors, especially for user errors.
Empirical data supports this law. However, inspections and

static analysis also reduce defects. A caveat is that prototypes
are about 10 percent of the size of the planned system. For an
application of 1,000 function points, the prototype would be
about 100 function points and easily built. For a massive ap-
plication of 100,000 function points, the prototype itself would
be a large system of 10,000 function points. This leads to the
conclusion that large systems are best done using incremental
development if possible.

Brooks’ Law
• Adding people to a late software project makes it later.
Empirical data supports this law to a certain degree. The com-

plexity of communication channels increases with application
size and team size. The larger the application, the more difficult
it is to recover from schedule delays. For small projects with
fewer than five team members, adding one more experienced
person will not stretch the schedule, but adding a novice will.
Projects that build large applications with more than 100 team
members almost always run late due to poor quality control and
poor change control. Adding people tends to slow things down
due to complex communication channels and delays for training.

Buddha’s Third Law
• All objects composed of component parts are fated to decay.
The historical Buddha, Sakyamuni, was born in Northern India

in 525 B.C. He, of course, founded a major religion. Some of the
underlying principles of Buddhism are surprisingly relevant to
the modern world. One of these is that the void, or nothingness,

18 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

is the source of all things. A second principle is that the universe
and everything in it are composed of millions of small particles.
The third law, included here, is that all things composed of
particles or component parts are fated to encounter entropy
and decay over time. Although this law was stated thousands of
years before computers, it is certainly true of computer software:
software decays and loses value over time. Constant mainte-
nance over time can delay software entropy, as we see with ag-
ing legacy applications. But eventually all software systems will
decay to the point of being withdrawn. See also the Lehman/
Belady laws later in this paper, which are similar to Buddha’s
laws. It is interesting that Steve Jobs, former CEO of Apple Inc.,
became a Buddhist, in part because of its relevance.

Conway’s Law
• Any piece of software reflects the organizational structure
that produced it.
Empirical data tends to support this law. An additional caveat

is that the size of each software component will be designed to
match the team size that is assigned to work on it. Since many
teams contain eight people, this means that even very large
systems might be decomposed into components assigned to
eight-person departments, which may not be optimal for the
overall architecture of the application.

Crosby’s Law
• Quality is free.
Empirical data supports Phil Crosby’s famous law for software

as well as for manufactured products. For software, high qual-
ity is associated with shorter schedules and lower costs than
similar projects with poor quality. Phil Crosby was an ITT vice
president who later became a global quality consultant. His book
“Quality is Free” is a best-seller.

Gack’s Law
• When executives or clients demand unrealistic and unobtain-
able project schedules, the probability of substantial cost
overruns and schedule delays will double; the actual project’s
schedule will probably be twice the optimistic schedule de-
manded by the stakeholder.
This law has been known for many years by software qual-

ity and process consultants. However, in spite of hundreds of
projects that end up in trouble, impossible schedules without
the benefit of either accurate parametric estimates or accurate
benchmarks from similar projects continue to be the most com-
mon way of developing medium to large applications between
1,000 and 10,000 function points in size. This size range is
characterized by amateurish manual estimates and failure to
bring in external benchmarks from similar projects. (Really large
projects in the 100,000-function point size range tend to use
professional estimating personnel, parametric estimating tools,
and historical benchmark data, although many of these massive
projects also get into trouble.)

Galorath’s Seventh Law
• Projects that get behind stay behind.
Dan Galorath has a number of other laws, but this one has

poignant truth that makes it among the most universal of all

software laws. While there are some consultants who are
turnaround specialists, by and large, projects that fall behind
are extremely difficult to recover. Deferring features is the most
common solution. Many attempts to recover lost time, such as
skipping inspections or truncating testing, backfire and cause
even more delays. This law is somewhat congruent with Brooks’
Law, cited earlier. See also Gack’s Law.

Gresham’s Law
• Bad drives out good.
This law predates software and is named after a Tudor-era fi-

nancier, Sir Thomas Gresham. The law was first stated for currency
and refers to the fact that if two currencies are of unequal intrinsic
value, such as gold and paper, people will hoard the valuable cur-
rency and drive it out of circulation. However, the law also has social
implications. Studies of software engineer exit interviews reveal that
software engineers with the highest appraisal scores leave jobs
more frequently than those with lower scores. Their most common
reason for leaving is “I don’t like working for bad management.” Re-
stated for software sociological purposes, this law becomes “Bad
managers drive out good software engineers.”

Hartree’s Law
• Once a software project starts, the schedule until it is com-
pleted is a constant.
Empirical data supports this law for average or inept projects that

are poorly planned. For projects that use early risk analysis and have
top teams combined with effective methods, this law is not valid. It
applies to about 90 percent of projects, but not the top 10 percent.
See also Brooks’ Law, Gack’s Law, and Galorath’s Seventh Law.

Hick’s Law
• The time needed to make a decision is a function of the
number of possible choices.
This law was not originally stated for software, but empirical

data supports this law for decisions regarding requirements
issues, design issues, coding issues, and quality control issues.
This law is related to complexity theory.

Humphrey’s Law
• Users do not know what they want a software system to do
until they see it working.
This law by the late Watts Humphrey is supported by empiri-

cal data for thousands of custom applications developed for
external clients. However, inventors who build applications for
their own use already have a vision of what the application is
supposed to do. This law supports the concept of increments,
each of which is usable in its own right. However, that is difficult
to accomplish for large and complex applications.

Jevons’ Law
• Increased efficiency in using a consumable product increases
the demand for the product.
This law originated in 1865 when William Stanley Jevons noted

that increased efficiency in burning coal had increased demand
for that product. Although the law applied to a physical product,
the same concept has been noted for computer memory chips
and thumb drives • the better they are, the more we use them.

CrossTalk—January/February 2017 19

SOFTWARE’S GREATEST HITS & MISSES

Jones’ Law of Software Failures
• The probability of a software project failing and not being
completed is proportional to the cube root of the size of the
software application using IFPUG function points with the
results expressed as a percentage. For 1,000 function points,
the odds are about 8 percent; for 10,000 function points the
odds are about 16 percent; for 100,000 function points the
odds are about 32 percent.
This law is supported by empirical data from approximately 26,000

projects. However, government projects and information systems fail
more frequently than systems software and embedded applications.

Jones’ Law of Defect Removal Efficiency (DRE)
• Every form of defect removal activity has a characteristic effi-
ciency level, or percentage of bugs actually detected. Most forms
of testing are about 35 percent efficient, or find one code bug
out of three. Inspections are about 85 percent efficient for all de-
fect sources. Static analysis is about 55 percent for code bugs.
The metric of defect removal efficiency (DRE) was first devel-

oped by IBM in the early 1970s while IBM was exploring formal
inspections as a method of improving overall software quality.
There are two common ways of measuring DRE as of 2014. The
original way used by IBM, Namcook Analytics, and many other
companies is to measure internal bugs and compare these against
bugs reported by users in the first 90 days of usage • if develop-
ers found 900 bugs and users reported 100 bugs in the first three
months, the DRE is 90 percent. Another way was adopted by the
International Software Benchmark Standards Group (ISBSG),
which compares development defects against user-reported bugs
found in the first 30 days of usage. The ISBSG results are usually
about 15 percent higher in DRE than the original IBM method.
The current U.S. average for DRE using the IBM and Namcook
method is below 90 percent, but the best projects top 99 percent.
The combination of function point metrics for defect density and
defect removal efficiency (DRE) provides a very good method for

quality analysis. By contrast, the “cost per defect” metric is harmful
because it penalizes quality and is cheapest for the buggiest soft-
ware. The software industry has very poor measurement practices
and continues to use metrics such as “lines of code” and “cost per
defect” that violate standard economic assumptions.

Jones’ Law of Software Test Case Volumes to
Achieve 98 Percent Test Coverage
• Raise application size in IFPUG function points to the 1.2 power
to predict the probable number of test cases needed to achieve
98 percent test coverage for code paths and explicit require-
ments. Thus, for 100 function points there may be 251 test
cases; for 1,000 function points there may be 3.981 test cases;
for 10,000 function points there may be 63.095 test cases.
There are about 25 different kinds of testing for software,

although the six most common forms of testing are 1) unit test,
2) new function test, 3) regression test, 4) component test, 5)
system test and 6) beta test. The law stated above applies to the
first five • beta tests are carried out by sometimes hundreds of
external customers who all may test in different fashions. This law
is based on empirical data from companies such as IBM and ITT,
which use certified test personnel. Companies and projects where
developers and amateurs perform testing would have a lower ex-
ponent and also lower test coverage. This law needs to be studied
at frequent intervals. It would be useful to expand the literature on
test case volumes and test coverage. Needless to say, cyclomatic
complexity can shift the exponent in either direction.

Jones’ Law of Software Development Schedules
• Raising application size in IFPUG function points to the 0.38
power provides a useful approximation of development sched-
ules in calendar months. For 100 function points, the sched-
ule would be about 5.8 months; for 1,000 function points the
schedule would be about 13.8 calendar months; for 10,000
function points the schedule would be about 33.2 months.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Model Based Testing
July/August 2017 Issue

Submission Deadline: Feb 10, 2017

Software Release Management
September/October 2017 Issue

Submission Deadline: Apr 10, 2017

The Profession
November/December 2017 Issue
Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

20 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

This law is supported by empirical data from about 26,000
software projects. However, military and defense projects need a
different exponent of about 0.4. Smaller Agile projects need a dif-
ferent exponent of about 0.36. Projects constructed primarily from
reusable components need a different exponent of about 0.33.

Lehman/Belady Laws of Software Evolution
• Software must be continually updated or it becomes less and
less useful.

• Software entropy or complexity increases over time.
• Software applications grow larger over time.
• Software quality declines over time.
• All users and software personnel must keep up-to-date with
software changes.
These laws by Dr. Meir Lehman and Dr. Laszlo Belady of IBM

were derived from a long-range study of IBM’s OS/360 operat-
ing system. However, they have been independently confirmed
by the author of this report and by other studies. The first law is
obvious, but the second law is not. The continual modification
of software to fix bugs and make small enhancements tends to
increase cyclomatic complexity over time and thus increase the
entropy or disorder of the software. In turn, this slows mainte-
nance work and may require additional maintenance personnel
unless replacement or restructuring occurs. Software renovation
and restructuring can reverse entropy, or at least slow it down.
See also Buddha’s Third Law earlier in this document.

Love’s Law of Legacy Application
Architecture Changes
• If you want to modify the architecture of a legacy system,
reorganize and restructure the support organization first and
then wait a while.
This law is congruent with several other laws that observe that

software architecture tends to reflect human organization struc-
tures, whether or not this is the best architecture for the software
itself. This law is congruent with Conway’s Law discussed earlier.
There seems to be a fundamental truth in the observation that soft-
ware mirrors human organizations, for good or for ill; probably for ill.

Love/Putnam Law of Maximum
Schedule Compression
• Software project schedules have a fixed point of maximum
compressibility. Once that point is reached, schedules can no
longer be shortened, no matter how many or what kinds of
resources are applied.
This law by Tom Love and Larry Putnam is an abstract

version of the Jones law that shows IFPUG function points
raised to the 0.38 power predict average schedules in calen-
dar months. In general, the point of maximum compressibility
is no more than about 0.3 below the average value; that is, if
a 0.38 exponent yields an average schedule, a 0.35 exponent
would yield the point below which schedules are no longer
compressible. For 1,000 function points, a value of 0.38
yields 13.8 calendar months. A value of 0.35 yields 11.2 cal-
endar months, beyond which further compression is not pos-
sible. A caveat is that constructing applications from libraries

of certified reusable materials or using a requirements-
model-based generator have both been shown to go past
the point of incompressibility. Love’s Law works for custom
designs and hand coding, but not for mashups or applications
built from standard reusable materials where manual coding
is minimized or not used at all. The first version of this law
was noted by the author of this paper in 1973 while building
IBM’s first parametric estimation tool. This is probably a case
of independent discovery since Putnam, Love, and Jones
were all looking at similar kinds of data.

Metcalfe’s Law
• The value of a network system grows as the square of the
number of users of the system.
This law is outside of the author’s scope of research and the

author’s collection of data. It seems reasonable, but due to a lack
of data, the author cannot confirm or challenge it here. It seems
obvious that network value increases as more people use it, as-
suming high usage does not degrade performance and reliability.

Moore’s Laws
• The power of computers per unit of cost doubles every 24
months.

• The number of transistors that can be placed on an integrat-
ed circuit doubles every 18 months.
These laws have been a mainstay of computing economics

for many years. One by one, the law reaches the end point of
various technologies, such as silicon and gallium arsenide, only to
continue to work with newer technologies. Quantum computing is
probably the ultimate end point at which the law will no longer be
valid. However, Moore’s laws have had a long and successful run •
probably longer than most of the laws in this paper.

Murphy’s Law
• If something can go wrong or fail, it will.
This is not a software law, but it is one that applies to all human

constructions. Empirical data supports this law to a certain de-
gree. The law is hard to study because some failures do not occur
until years after software has been released and is in use. There
is an interesting website that lists dozens of variations of Murphy’s
Laws applied to computer software: murphys-laws.com.

Paul’s Principle
• Knowledge workers become less competent over time, since
knowledge changes faster than practitioners learn new skills.
This is a thought-provoking observation for software

specialists such as testers, business analysts, architects and
the like. The concept seems to be supported by observations
and evidence. It can be extended to corporations, since the
rates of initial innovations in companies such as Apple and
Microsoft slow down over time. Some kinds of knowledge
work, such as medicine and law, have managed to overcome
this principle by requiring continual education in order to
keep licenses valid. Since software has no licenses and little
required continuing education for professionals (as of 2016),
this seems to be a weakness for software engineering.

CrossTalk—January/February 2017 21

SOFTWARE’S GREATEST HITS & MISSES

Parkinson’s Law
• Work expands to fill the time available for completion.
Software is labor intensive, and there is no strong supporting evi-

dence of software engineers puffing up projects to fill vacant time
since most software projects have very little vacant time available.

Senge’s Law
• Faster is slower.
Peter Senge noted that, for business in general, attempts to

speed up delivery of a project often made it slower. This phenom-
enon is true for software. Common mistakes made when trying
to speed up projects include omitting inspections and truncat-
ing testing. These tend to stretch out software development, not
shorten it. Hasty collection and review of requirements, jumping
into coding prior to design, and ignoring serious problems are
all practices that backfire and make projects slower. To optimize
software development speed, quality control (including inspec-
tions and static analysis prior to testing) is valuable.

Pareto Principle
(Applied to Software Quality by Capers Jones)
• More than 80 percent of software bugs will be found in less
than 20 percent of software modules.
The discovery of error-prone modules (EPM), which receive

far more bug reports than normal, was first made in IBM in
the 1970s and confirmed by other companies including ITT,
AT&T and many others. In general, bugs are not randomly
distributed but clump in a small number of modules, often with
high cyclomatic complexity. This phenomenon is common on
large applications above 1,000 function points in size. For the
IBM IMS database project, about 57 percent of customer-
reported bugs were found in 32 modules out of a total of
425 modules in the application. More than 300 IMS modules
had zero-defect bug reports from customers. Inspections and
surgical removal of error-prone modules raised IMS reliability
and customer satisfaction at the same time that maintenance
costs were reduced by more than 45 percent and development
cycles were reduced by 15 percent. Such findings confirm
Crosby’s Law that software quality is indeed free. It often hap-
pens that less than five percent of software modules contain
more than 95 percent of software bugs. The Pareto Principle
has been explored by many software researchers, including
Gerald Weinberg and Walker Royce, and it seems relevant to a
wide range of software phenomena.

The Peter Principle
• In a hierarchy, every employee tends to rise to the level of his
or her incompetence.
This is not an exclusively software observation but is a general

business observation. It does not seem to hold for software tech-
nical work, since good software engineers may not have a level of
incompetence. The law seems more relevant to subjective tasks
than to engineering tasks. If the law is restricted to a manage-
ment population rather than a population of technical personnel, it
seems to have more relevance. Indeed, the most visible manifes-
tations of this law are often at the CEO and corporate chair levels.

Weinberg’s First Law
• If a program does not have to be correct, it can meet any
other requirement.
This law is intriguing. Most programs are not correct, yet

they are deployed and used daily. Only when serious bugs
occur does the lack of correctness have a major impact. The
essence of the idea is that correctness is difficult, but other
factors are not as difficult.

Weinberg’s Second Law
• If builders built buildings the way programmers write pro-
grams, a woodpecker could destroy civilization.
This law is the most thought-provoking law in this paper. It

deserves serious consideration. Empirical data supports this
law to a certain degree. Software applications with question-
able architecture and high levels of cyclomatic and essential
complexity are fragile. Small errors and even one line of bad
code can stop the application completely or create large and
expensive problems.

Weinberg/Okimoto Law of “TEMP” Hazards
• Any application that contains the string “TEMP” will be diffi-
cult to maintain because that string indicates temporary work
that probably was done carelessly.
This interesting law by Jerry Weinberg and Gary Okimoto is

derived from examining actual code strings in software. Those
highlighted by markers indicating temporary routines have a
tendency to become error prone.

Weinberg/Jones Law of Error-Prone Module
(EPM) Causation
• A majority of error-prone modules (EPM) bypass some or all
of proven effective quality steps such as inspections, static
analysis, and formal testing.
This law was derived independently by Jerry Weinberg and

the author from examination of error-prone modules (EPM) in
different applications and in different development labora-
tories in different parts of the country. We both noted that a
majority of error-prone modules had not followed proven and
effective quality control methods such as inspections, static
analysis, and formal testing. Root cause analysis also indi-
cated that some of the careless development was due to the
modules arriving late because of creeping user requirements.

Wirth’s Law
• Software performance gets slower faster than hardware
speed gets faster.
This law was stated during the days of mainframes and

seemed to work for them. However, for networked microproces-
sors and parallel computing, the law does not seem to hold.

Yannis’ Law
• Programming productivity doubles every six years.
The author’s own data shows that programming productiv-

ity resembles a drunkard’s walk, in part because application
sizes keep getting larger. However, if you strip out require-

22 CrossTalk—January/February 2017

SOFTWARE’S GREATEST HITS & MISSES

ments and design and concentrate only on pure coding tasks,
then the law is probably close to being accurate. Certainly
modern languages such as Java, Ruby, Go, C# and the like
have better coding performance than older languages, such
as Assembly and C. There is a caveat, however. Actual coding
speed is not the main factor. The main factor is that modern
languages require less unique code for a given application,
due in part to more reusable features. Yannis’ Law would be
better if it specified separate results by application size and
by application type. For example, there is strong evidence of
productivity gains below 1,000 function points in size but little
or no evidence for productivity gains above 10,000 function
points. Productivity rates vary in response to team experience,
methodologies, programming languages, CMMI levels, and
volumes of certified reusable materials. For any given size and
type of software project, productivity rates vary by at least 200
percent in either direction from the nominal average.

Zipf’s Law
• In natural language, the frequency of a word is inversely
proportional to its rank in the frequency table (that is, the
most common word is used about twice as much as the
second most common word). Zipf’s Law appears to work with
programming keywords as well as natural language text.

This law by George Zipf was originally developed based on
linguistics patterns of natural languages long before software
even existed. However, it does seem relevant to software
artifacts, including requirements, design, and source code. A
useful extension to Zipf’s Law would be to produce a frequency
analysis of the vocabulary used to define programs and systems
as a step toward increasing the volume of reusable materials.

Summary and Conclusions
This list of software laws shows a number of underlying

concepts associated with software engineering. The laws by
the author were originally published over a 35-year period in 16
books and approximately 100 journal articles. This is the first
time the author’s laws have been listed in the same document.

These laws are derived from the author’s collection of quan-
titative data, which started at IBM in 1970 and has continued
to the current day. The author was fortunate to have access to
internal data at IBM, ITT, and many other major software com-
panies. The author has also had access to data while working as
an expert witness in a number of software lawsuits.

While many laws are included in this article, no doubt many
other laws are missing. This is a work in progress, and new laws
will be added from time to time.

Send resumes to:
76SMXG.Tinker.Careers@us.af.mil

US citizenship required

Tinker AFB is only 15 minutes away from
downtown OKC, home of the OKC Thunder,
and a wide array of dining, shopping,
historical, and cultural attractions.

WE ARE HIRING
ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS

As the largest engineering organization on Tinker Air Force Base, the
76th Software Maintenance Group provides software, hardware, and
engineering support solutions on a variety of Air Force platforms and
weapon systems. Join our growing team of engineers and scientists!

BENEFITS INCLUDE:

 Job security

 Potential for career growth

 Paid leave including federal holidays

 Competitive health care plans

 Matching retirement fund (401K)

 Life insurance plans

 Tuition assistance

 Paid time for fitness activities

Oklahoma City SkyDance Bridge, Photo © Will Hider

mailto:76SMXG.Tinker.Careers@us.af.mil
76SMXG.Tinker.Careers@us.af.mil

CrossTalk—January/February 2017 23

SOFTWARE’S GREATEST HITS & MISSES

Note: A Google search on phrases such as “software laws” and “software engineering
laws” will return a variety of interesting sources. The references included here are only
a small portion of the available literature.
Boehm, Barry. (1981.) “Software Engineering Economics.” Prentice Hall, Englewood Cliffs, N.J.
Brooks, Fred. (1974, rev. 1995.) “The Mythical Man-Month.” Addison-Wesley, Reading, Mass.
Campbell-Kelly, Martin. (2003.) “A History of the Software Industry: from Airline

Reservations to Sonic the Hedgehog.” The MIT Press, Cambridge, Mass. ISBN 0-262-
03303-8. 372 pages.

Crosby, Philip B. (1979.) “Quality is Free.” New American Library. Mentor Books. New
York, N.Y. 270 pages.

DeMarco, Tom (1999.) “Peopleware: Productive Projects and Teams.” Dorset House. New
York, N.Y. ISBN 10: 0932633439. 245 pages.

DeMarco, Tom & Lister, Tim. (2003.) “Waltzing with Bears: Managing Risks on Software
Projects.” Dorset House Press, N.Y.

Gack, Gary. (2010.) “Managing the Black Hole – The Executive’s Guide to Project Risk.”
The Business Expert Publisher. Thomson, Georgia. ISBSG10: 1-935602-01-2.

Humphrey, Watts. (1989.) “Managing the Software Process.” Addison Wesley. Reading, Mass.
Jones, Capers & Bonsignour, Olivier. (2011.) “The Economics of Software Quality.” Ad-

dison Wesley Longman. Boston, Mass. ISBN 10: 0-13-258220—1. 585 pages.
Jones, Capers. (2014.) “The Technical and Social History of Software Engineering.”

Addison Wesley.
Jones, Capers. (2010.) “Software Engineering Best Practices.” McGraw Hill. New York,

N.Y. ISBN 978-0-07-162161-8. 660 pages.
Jones, Capers. (2007.) “Estimating Software Costs.” McGraw Hill. New York, N.Y. ISBN

13-978-0-07-148300-1.
Jones, Capers. (1994.) “Assessment and Control of Software Risks.” Prentice Hall. ISBN

0-13-741406-4. 711 pages.
Jones, Capers. (December 1995.) “Patterns of Software System Failure and Success.”

International Thomson Computer Press. Boston, Mass. 250 pages. ISBN 1-850-
32804-8. 292 pages.

Jones, Capers. (2000.) “Software Assessments, Benchmarks, and Best Practices.” Ad-
dison Wesley Longman. Boston, Mass. ISBN 0-201-48542-7. 657 pages.

Jones, Capers. (January 1977.) “Program Quality and Programmer Productivity.” IBM
Technical Report TR 02.764, IBM. San Jose, Calif.

Kan, Stephen H. (2003.) “Metrics and Models in Software Quality Engineering, 2nd edi-
tion.” Addison Wesley Longman. Boston, Mass. ISBN 0-201-72915-6. 528 pages.

Kuhn, Thomas. (1996.) “The Structure of Scientific Revolutions.” University of Chicago
Press. Chicago, Ill. ISBN 0-22645807-5. 212 pages.

Love, Tom. (1993.) “Object Lessons: Lessons Learned in Object-Oriented Development
Projects.” SIGS books. ISBN 0-9627477-3-4. 266 pages.

McConnell, Steve. (1997.) “Software Project Survival Guide.” Microsoft Press.
Pressman, Roger. (2005.) “Software Engineering – A Practitioner’s Approach.” McGraw

Hill. N.Y. 6th edition. ISBN 0-07-285318-2.
Radice, Ronald A. (2002.) “High Quality Low Cost Software Inspections.” Paradoxicon

Publishing. Andover, Mass. ISBN 0-9645913-1-6. 479 pages.
Starr, Paul. (1982.) “The Social Transformation of American Medicine.” Basic Books.

Perseus Group. ISBN 0-465-07834-2. NOTE: This book won a Pulitzer Prize in 1982
and is highly recommended as a guide for improving both professional education
and professional status. There is much of value for the software community.

Strassmann, Paul. (1985.) “Information Payoff.” Information Economics Press. Stamford, Conn.
Strassmann, Paul. (2004.) “Governance of Information Management: The Concept of

an Information Constitution.” 2nd edition (eBook). Information Economics Press.
Stamford, Conn.

Strassmann, Paul. (1999.) “Information Productivity.” Information Economics Press.
Stamford, Conn.

Wiegers, Karl E. (2002.) “Peer Reviews in Software – A Practical Guide.” Addison
Wesley Longman. Boston, Mass. ISBN 0-201-73485-0. 232 pages.

Weinberg, Gerald M. (1971.) “The Psychology of Computer Programming.” Van Nostrand
Reinhold, New York. ISBN 0-442-29264-3. 288 pages.

Weinberg, Gerald M. (1986.) “Becoming a Technical Leader.” Dorset House. New York.
ISBN 0-932633-02-1. 284 pages.

Yourdon, Ed. (1997.) “Death March - The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects.” Prentice Hall PTR. Upper Saddle River, N.J.
ISBN 0-13-748310-4. 218 pages.

ABOUT THE AUTHOR
Capers Jones is currently vice president and chief technology officer of Namcook Analytics LLC. Prior
to the formation of Namcook Analytics in 2012, he was the president of Capers Jones & Associates
LLC. He is the founder and former chairman of Software Productivity Research LLC (SPR). Capers
Jones founded SPR in 1984 and sold the company to Artemis Management Systems in 1998. He
was the chief scientist at Artemis until retiring from SPR in 2000.

Before founding SPR, Capers was Assistant Director of Programming Technology for the ITT
Corporation at the Programming Technology Center. During his tenure, he designed three proprietary
software cost and quality estimation tools for ITT between 1979 and 1983. He was also a manager
and software researcher at IBM in California where he designed IBM’s first two software cost esti-
mating tools in 1973 and 1974 in collaboration with Dr. Charles Turk. Capers Jones is a well-known

author and international public speaker. Some of his books have been translated into five languages. His most recent book is The Techni-
cal and Social History of Software Engineering, Addison Wesley 2014.

Capers Jones has also worked as an expert witness in 15 lawsuits involving breach of contract and software taxation issues and
provided background data to approximately 50 other cases for other testifying experts.
Capers.Jones3@gmail.com
www.Namcook.com

REFERENCES

mailto:Capers.Jones3@gmail.com
http://www.Namcook.com

